UMEA UNIVERSITY February 14, 2010
Institution of Computer Science
Lab report

Lab 3
Artificial Intelligence 7.5p

Happy, Sad, Mischevious or Mad?

Name Eric Jonsson
E-mail ericj@cs.umu.se
Path ~ericj/edu/ai/lab3

Graders
Michael Minock and Johan Granberg

Happy, Sap, MISCHEVIOUS OR MAD? CONTENTS

Contents

1 Lab specification 1

2 File access and program manual 1
2.1 Fileoverview 1
2.2 Compilation Lo 1
2.3 Running the program 2

3 System description 2

4 Test runs 3

5 Issues 4

Eric Jénsson, ericj@cs.umu.se i February 14, 2010

Happy, Sap, MISCHEVIOUS OR MAD? 2 FILE ACCESS AND PROGRAM MANUAL

1 Lab specification

Single-layered feed-forward neural networks (or perceptron for short) presents
an interesting way of classifying information. For this assignment, the student
was to write a perceptron that given a series of sketches of faces judge whether
these faces looks happy, sad, mischevious or mad.

The complete specification can be downloaded from the following adress:

http://www8.cs.umu.se/kurser/5DV019/HT09/happy . pdf

2 File access and program manual

2.1 File overview

All files related to the assignment can be found at the following path:
~ericj/edu/ai/lab3

This directory contains the following files and directories:

e An ant build file, build.xml.

e Two shellscripts for internal testing, check.sh and masscheck.sh.

Another shellscript for testing by the grader, classify.

A training set, consisting of the files training.dat and correct.dat.

A small test set taken from the training set, test.dat.

Furthermore, the source code is contained in the src subdirectory while this
report is found in the doc directory.

2.2 Compilation
To compile the program, simply type ant (or ant jar), like this:

bilbo:~/edu/ai/lab3> ant
Buildfile: build.xml

compile:
[mkdir] Created dir: /home/ericj/edu/ai/lab3/bin
[javac] Compiling 6 source files to /home/ericj/edu/ai/lab3/bin

jar:
[jar] Building jar: /home/ericj/edu/ai/lab3/Faces.jar

BUILD SUCCESSFUL

Total time: 1 second
bilbo:~/edu/ai/lab3>

This results in an executable Java archive, Faces. jar.

Eric Jénsson, ericj@cs.umu.se 1 February 14, 2010

Happy, Sap, MISCHEVIOUS OR MAD? 3 SYSTEM DESCRIPTION

2.3 Running the program

There are two modes to this program: training and guessing. To train the
perceptron on the default training set, type ant train:

bilbo:~/edu/ai/lab3> ant train
Buildfile: build.xml

compile:
jar:

train:
[java] Perceptron trained. Bring it on!

BUILD SUCCESSFUL
Total time: 2 seconds
bilbo:~/edu/ai/lab3>

Alternatively, if you’d like to specify the training set yourself, run Java like this:
bilbo:~/edu/ai/lab3> java -jar Faces.jar train training.dat correct.dat

..where training.dat and correct.dat is your training set with corresponding
solutions. This creates a file, matrix.dat, containing the weight matrix for the
perceptron. To have the perceptron start guessing, run the classify shellscript,
like this:

bilbo:~/edu/ai/lab3> ./classify test.dat
Imagel 2

Image9 2

Imagel0 3

bilbo:~/edu/ai/lab3>

Remember to train the system before attempting classification: if the matrix.dat
file doesn’t exist, you’ll get an error:

bilbo:~/edu/ai/lab3> ./classify test.dat
Failed reading file.
bilbo:~/edu/ai/lab3>

3 System description

This implementation reads the input files, extracts the relevant information and
builds a perceptron with a sufficient amount of input- and output nodes'. This
resulting neural net is a complete bipartite graph?, and has therefore internally

IFor this assignment, this means 400 input- and 4 output nodes.
2This basically means that every input node is connected to every output node. (and vice
versa)

Eric Jénsson, ericj@cs.umu.se 2 February 14, 2010

Happy, Sap, MISCHEVIOUS OR MAD? 4 TEST RUNS

been represented by a n * m matrix consisting of the link weights. This relation
is illustrated in figure 1.

1 2 ..nN 1 2..n

Figure 1: A n*m complete bipartite graph and its corresponding weight matrix

When constructed, all link weights are initialized to 1. These are then changed
in accordance to a supervised training algorithm based on gradient-descent: the
input is pushed through the sigmoid (squashing) function g(x) = H% which
happens to have the convenient range 0 < g(x) < 1. The link weights are then
updated according to the relative error, based on the sigmoid functions deriva-
tive ¢'(z) = g(1 — g(x)) — the general idea being that the smaller the relative
error becomes, the smaller the changes to the link weights. This procedure is
then repeated until the perceptron starts guessing right, expressed as the sum
of total link changes in each iteration.

4 Test runs

To accurately test the system, two shellscripts were used. The script check.sh
compares the output of the program with the correct file and counts the number
of errors. Below is a sample output.

bilbo:~/edu/ai/lab3> ./check.sh Faces.jar training.dat \
correct.dat test.dat

Errors: 0/10

bilbo:~/edu/ai/lab3>

To get an idea of how well the system performs on a larger set of test data, the
script masscheck.sh was used. It runs for a number of iterations, repeatedly
training and re-training the perceptron, generating new weight matrices every
time. Each time, the script checks the output of check.sh to count the number
of errors, finally presenting an average value.

Below is parts of the script output using the original training set as test set and
running for a thousand iterations.

bilbo:~/edu/ai/lab3> ./masscheck.sh Faces.jar training.dat \
correct.dat training.dat 1000
Test 1/1000 complete

Test 998/1000 complete
Test 999/1000 complete
Test 1000/1000 complete
Average: 12.0/400
bilbo:~/edu/ai/lab3>

Eric Jénsson, ericj@cs.umu.se 3 February 14, 2010

Happy, Sap, MISCHEVIOUS OR MAD? 5 IssuEs

Producing on average twelve errors per four-hundred faces, the perceptron has
an accuracy of about 97% on the given training set.

5 Issues

How well would the perceptron perform when given a face not included in the
training set? Probably not very well. Emanuel Dohi, a graduate student of
the CS department, reminded me of the dangers of over-training — tuning the
perceptron to such a high degree that it doesn’t only pick up on the obvious
features of the faces, but the individual errors in the training set as well. The
test runs in section 4 clearly demonstrate that the system is horribly, horribly
over-trained.

To amend this and perhaps make the perceptron a little bit more suitable for
real-world problems, only a single parameter in the source code needs to be
modified — the limit for weight changes before the perceptron considers itself fully
trained. Emanuel Dohi suggested that my perceptron should guess correctly no
more often than 80% of the time on the training set to be able to react decently
to other input as well, but I've chosen to ignore it for now, saving it for another
exercise.

Eric Jénsson, ericj@cs.umu.se 4 February 14, 2010

