UMEA UNIVERSITY
Artificial intelligence

Department of Computer Science (5DV019), Fall 09
Assignment report Assignment 1
Generalised tic-tac-toe first delivery

Artificial intelligence

Assignment 1 — Generalised tic-tac-toe

Tutor(s):
Johan Granberg

Petter Ericson, Eric Jonsson pettter, dv06ejn@cs.umu.se

~pettter, dv06ejn/edu/ai/labl September 25, 2009

Assignment 1 — Generalised tic-tac-toe

5DV019 P Ericson, E Jonsson
Contents
1 Problem specification 1
2 Access and user manual 1
3 System description 2
4 Algorithm description 2
4.1 Alpharbetapruning. L oL o 3
4.2 Tterative deepening Lo 3
5 The heuristics function 3
6 Limitation of the solution 4
7 Problems and reflections 4
8 Test case 4

A log.txt 5

Assignment 1 — Generalised tic-tac-toe
5DV019 P Ericson, E Jonsson

1 Problem specification

The problem of search turns out to be a fundamental concept in artificial intelli-
gence. Many problems can be formulated as a search problem, and a good part
of the course is dedicated to search strategies and how to employ and improve
upon them.

For this assignment, we were to create a game-playing (adversarial search)
AT employing min/max search with alpha-beta-pruning and iterative deepening.
We are pleased to report that we produced a fully-working implementation, see
sections 3 and 4 of details of how it was done.

The complete problem specification can be downloaded from http://www.
cs.umu. se/kurser/5DV019/HT09/ttt. pdf

2 Access and user manual

The program compiles and runs on (at least) the Linux- and Solaris machines
available at the department of Computer Science at Umea University. The
source code can be fetched from ~pettter, dv06ejn/edu/ai/labl.

To compile, simply type make:

mega:~/edu/ai/labl> make
mega:”~/edu/ai/labl>

This produces a game binary located in the bin/ folder. To see how it works,
type bin/ttt:

mega:~/edu/ai/labl> bin/ttt

Usage: bin/ttt n m d [foo]

n: number of tic or tac in a row

m: size of game board (52 or less)

d: depth of AI search tree

if there is a fourth argument, the AI begins play
mega:”~/edu/ai/labl>

So for example, to play a typical four-in-a-row game on a seven by seven
game board using an AT that thinks six moves ahead, type bin/ttt 4 7 6:

abcdefg

This presents an empty game board and asks you for the X coordinate to
your preferred mark. After specifying the Y coordinate again, the AI “thinks”
for a while and presents its move:

Assignment 1 — Generalised tic-tac-toe

5DV019 P Ericson, E Jonsson
X: d
Y: d
abcdefg
a
b
c
X d
0 e
f
g
X:

If one should grow bored of waiting for the AT to react, you can send it the
SIGINT signal, representing a software interrupt. The AI then places its mark
at what it currently thinks is its best move and passes the turn.

The game continues until someone wins or the board becomes full at which
point the program terminates:

abcdefg

a

b

X0c
XX0 d

0 e

0 f

X g

mega:”~/edu/ai/labl>

If one wishes to end the game prematurely, the user simply sends the SIGINT
signal during his or her own turn.

3 System description

While the original plan for the system envisioned three modules; one being the
user interface (the src/ui directory), the second the AI (src/ai) and the third
being the game logic and main program (main.c), in the end the user interface
was simplified and incorporated into the main program.

Further, the system was designed to have very loose coupling between the
modules. In principle, only three callbacks are required for each player; an
initiation, a method of returning the next move and a finish-up method.

4 Algorithm description

From an Al standpoint, there are only a few interesting topics worth mentioning
among the techniques we used:

e Alpha-beta pruning

Assignment 1 — Generalised tic-tac-toe
5DV019 P Ericson, E Jonsson

e Iterative deepening

e The heuristics function

For details on the heuristics function, (and indeed that is likely the most
interesting read this paper has to offer) see section 5.

4.1 Alpha-beta pruning

Alpha-beta pruning can be considered an enhancement to the basic min/max
search strategy, and so we shall refer to it directly when talking about game tree
search. This implementation uses a similar search strategy as the one given in
the course book, the main difference being that we pass a pointer to a “currently
best move” in order to have the search function interruptable.

4.2 Iterative deepening

In order to make the AI interruptable and still produce a decent result,! we
employed the commonly used technique of iterative deepening.

The search begins at one ply deep and a “best move” is recorded. It then con-
tinues to search deeper and deeper, overwriting its previous best move as it finds
new ones. If the search reaches maximum depth or the search is interrupted,
the last found “best move” is given.

5 The heuristics function

While the heuristics is not very complicated in concept, in practise it is rather
cumbersome to implement. The basis of the algorithm is that every cell in the
game grid has a value for each line it is part of, and the total heuristic is the
sum of all of these values over the whole board.

For this application, a line is a number of adjacent cells, either horizontal,
vertical, or on any diagonal with the same symbol. Also, the degrees of freedom
of that line is defined as the number of free cells directly adjacent to the edge
cells in the line’s direction. I.e. if the line has two degrees of freedom, it can
expand in either direction, if it has one, it can only expand in one direction,
and if it has zero, it can not be expanded further.

Thus, the heuristic value of cell ¢ for vertical lines is

vert val(c) =1+ (I*(d)+d)

where [is the number of nodes in the vertical line ¢ belongs to and d is the
number of degrees of freedom of that line. Of course, the heuristic values are re-
versed when computing the opponents’ cells. There are some obvious drawbacks
to this heuristic. For example, no regard is given to whatever lies beyond the
closest cell to the end of each line. However, it is fast to compute and empirical
tests have determined it to work well enough to beat both authors.

LAnd in all fairness, to earn the extra 33 points (a whooping 3.3% of the total score) on
the final exam.

Assignment 1 — Generalised tic-tac-toe
5DV019 P Ericson, E Jonsson

6 Limitation of the solution

The program suffers from two big disadvantages — the lack of a proper user
interface being one. A mouse-driven event UI has the obvious advantage of not
having to specifying coordinates, (something that becomes particularly tiresome
at large game areas) you can simply click where you want your mark to appear.
For this assignment however, we deemed a proper user interface to be more
trouble than it’s worth, we much preferred to have a (fast!) working solution.

The second limitation is the lack of heuristics inheritance. Given a board of
heuristic values and a next move, we’d like to be able to calculate the difference
in heuristics value on the current board instead of generating it all again from
scratch. We’re not quite sure on how to actually do this, but we believe it’s
both possible and potentially very fast on larger boards.

7 Problems and reflections

Starting the assignment, we had a list of features we wanted to implement.
These include:

o Multi-threading. We wanted to take advantage of the dual- and quad-core
computers available today, but failed to find a good parallel algorithm for
alpha-beta search or board evaluation. As such, the program remains
single-threaded.

e Busy AI. The best chess players anticipate the opponents moves and
doesn’t sit idle while the opponent is thinking. We would have liked to
have the AI consider possible moves even during the opponents turn in
order to have it become even faster. Alas, it was not to be.

During the assignment, we also encountered the usual pitfalls commonly
found when coding C: mysterious segmentation faults, jumps into invalid mem-
ory, intimate affairs with the GNU debugger during the long hard nights, and so
on.

8 Test case

To demonstrate that the AI beats a moderate human player on four-in-a-row
on a 7x7 board, the appendix includes a game log.

